

Hilti HVU с шпилькой HAS/HAS-E

Химическая система		Преимущества
HVU M20x170 HVU M20x170 HVU M2. (7/8" x 6 5/8") HVU M2. (7/8" x 6 5/8") HVU M2.	Hilti HVU химическая капсула	 подходит для бетона без трещин С 20/25 - С 50/60 высокая несущая способность подходит для сухого и влажного бетона
(1000000000000000000000000000000000000	HAS HAS-R HAS-HCR шпилька	подходит для больших диаметроввысокая коррозионная стойкость
	HAS-E HAS-E R HAS-E HCR шпилька	

Бетон

Малые межосевые и до кромки

Соответствует критериям пожаро- безопасности

Нержавеющ ая версия

Высококоррозионная версия

Европейский

сертификат

Программа расчета PROFIS

Сертификаты / свидетельства

Описание	Институт / Лаборатория	№. / Дата выпуска
Европейский сертификат а)	DIBt, Берлин	ETA-05/0255 / 2011-06-23
Отчет об испытаниях на огнестойкость	IBMB, Braunschweig	UB-3333/0891-1 / 2004-03-26
Отчет об испытаниях на огнестойкость ZTV-Tunnel	IBMB, Braunschweig	UB 3333/0891-2 / 2003-08-12
Оценочный отчет (огнестойкость)	warringtonfire	WF 166402 / 2007-10-26

а) Все данные раздела приводятся согласно ЕТА-05/0255, издан 2011-06-23

Базовая нагрузка (для одиночно установленного анкера)

Все данные в этом разделе указаны для случая, когда: Для подробной информации смотрите расчет

- Анкер установлен корректно (См. инструкцию по установке)
- Отсутствует влияние межосевых расстояний и расстояний до кромки
- Разрушение происходит по стали
- Толщина базового материала, согласно спецификации по таблице
- Одна глубина посадки , согласно спецификации по таблице
- Один материал анкера, согласно спецификации по таблице
- Бетон C 20/25, f_{ck,cube} = 25 N/mm²
- Температурный диапазон
 - (Минимальная температура базового материала -40°C, максимальная температура базового материала: $+24^{\circ}\text{C}/40^{\circ}\text{C}$)

- Температурный диапазон установки от -5°C до +40°C

Глубина посадки а) толщина базового материала для базовых нагрузок.

Ультимативное сопротивление, характеристическое сопротивление, расчетное сопротивление, рекомендуемая нагрузка.

Размер анкера	M8	M10	M12	M16	M20	M24	M27	M30
Глубина посадки [mm]	80	90	110	125	170	210	240	270
Толщина базового материала	140	160	210	210	340	370	480	540
[mm]								

а) Допустимый диапазон глубины анкеровки указан в разделе «Детали установки». Соответствующие значения нагрузок могут быть расчитаны по упрощенному методу.

Ультимативное сопротивление: бетон С 20/25 - $f_{ck,cube}$ = 25 N/mm², анкер HAS

			Данные согласно ЕТА-05/0255, изданного 2011-06-23							3
Размер анкер	ер анкера M8 M10 M12 M16 M20 M24 M27							M30		
Углеродистая сталь, прочность			5.8	5.8	5.8	5.8	5.8	5.8	8.8	8.8
Вырыв $N_{\text{Ru},m}$	HAS	[kN]	17,9	27,3	39,9	75,6	117,6	168,0	249,3	297,4
Срез V _{Ru,m}	HAS	[kN]	8,9	13,7	20,0	37,8	58,8	84,0	182,7	221,6

Характеристическое сопротивление: бетон С 20/25 - f_{ck,cube} = 25 N/mm², анкер HAS

			Данные согласно ЕТА-05/0255, изданного 2011-06-23							
Размер анкера M8 M10 M12 M16 M20 M24 M27							M30			
Углеродистая сталь, прочность			5.8	5.8	5.8	5.8	5.8	5.8	8.8	8.8
Вырыв N _{Rk}	HAS	[kN]	17,0	26,0	38,0	60,0	111,9	140,0	187,8	224,0
Cpes V _{Rk}	HAS	[kN]	8,5	13,0	19,0	36,0	56,0	80,0	174,0	211,0

Расчетное сопротивление: бетон С 20/25 - f_{ck.cube} = 25 N/mm², анкер HAS

				Данные согласно ЕТА-05/0255, изданного 2011-06-23							
Размер анке	epa M8 M10 M12 M16 M20 M24 M27						M27	M30			
Углеродистая сталь, прочность			5.8	5.8	5.8	5.8	5.8	5.8	8.8	8.8	
Вырыв N _{Rd}	HAS	[kN]	11,3	17,3	25,3	40,0	74,6	93,3	125,2	149,4	
Срез V _{Rd}	HAS	[kN]	6,8	10,4	15,2	28,8	44,8	64,0	139,2	168,8	

Рекомендуемые нагрузки $^{a)}$: бетон C 20/25 – $f_{ck,cube}$ = 25 N/mm², анкер HAS

			Данные согласно ЕТА-05/0255, изданного 2011-06-2							3
Размер анкера M8 M10 M12 M16 M20 M24 M27							M27	M30		
Углеродистая сталь, прочность			5.8	5.8	5.8	5.8	5.8	5.8	8.8	8.8
Вырыв N _{rec}	HAS	[kN]	8,1	12,4	18,1	28,6	53,3	66,7	89,4	106,7
Срез V _{rec}	HAS	[kN]	4,9	7,4	10,9	20,6	32,0	45,7	99,4	120,6

а) С коэффициентом безопасности γ = 1,4. Коэффициенты безопасности зависят от типа загружения и должны быть приняты в соответствии с местными нормами.

Температурный диапазон эксплуатации

Химический анкер HVU, может использоваться в температурном диапазоне приведенном ниже. Высокая температура базового материала может привести к снижению прочности сцепления.

Температурный диапазон	Температура базового материала	Максимальная продолжительная температура	Максимальная кратковременная температура
Температурный диапазон I	от -40 °C до +40 °C	+24 °C	+40 °C
Температурный диапазон II	от -40 °C до +80 °C	+50 °C	+80 °C
Температурный диапазон II	от -40 °C до +120 °C	+72 °C	+120 °C

Макс. кратковременная температура базового материала

Кратковременно повышающаяся температура базового материала, это кратковременно изменяющаяся температура через определенные интервалы времени напр. суточные изменения температуры.

Макс. продолжительная температура базового материала

Долговременно повышающаяся температура базового материала – температура базового материала повышающаяся на протяжении довольно продолжительного промежутка времени.

Материалы

Механические свойства HAS

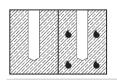
			,	Данные согласно ЕТА-05/0255, изданного 2011-06-23							
Размер ан	кера		M8	M10	M12	M16	M20	M24	M27	M30	
	HAS-(E)	[N/mm²]	500	500	500	500	500	500	-	-	
Номин.	HAS-(E)F	[N/mm²]	800	800	800	800	800	800	800	800	
усилие на вырыв fuk	HAS –(E)R	[N/mm²]	700	700	700	700	700	700	500	500	
BBIPBIB Tak	HAS –(E)HCR	[N/mm²]	800	800	800	800	800	700	-	-	
	HAS-(E)	[N/mm²]	400	400	400	400	400	400	-	-	
Предел	HAS-(E)F	[N/mm²]	640	640	640	640	640	640	640	640	
текучести f _{yk}	HAS –(E)R	[N/mm²]	450	450	450	450	450	450	210	210	
'yk	HAS –(E)HCR	[N/mm²]	640	640	640	640	640	400	-	-	
Критическ ое сопротивл ение А _s	HAS	[mm²]	32,8	52,3	76,2	144	225	324	427	519	
Момент сопротивл ения W	HAS	[mm³]	27,0	54,1	93,8	244	474	809	1274	1706	

Качество материала

Элемент	Материал
Резьбовая шпилька HAS-(E) M8-M24	Класс стали 5.8, EN ISO 898-1, $A_5 > 8\%$ твердость оцинкованная сталь ≥ 5 µm, EN ISO 4042 (F) горячеоцинкованная сталь ≥ 45 µm, EN ISO 10684
Резьбовая шпилька HAS-(E)F M8-M30 HAS-(E) M27+M30	Класс стали 8.8, EN ISO 898-1, A ₅ > 8% твердость оцинкованная сталь ≥ 5 µm, EN ISO 4042 (F) горячеоцинкованная сталь ≥ 45 µm, EN ISO 10684
Резьбовая шпилька HAS-(E)R	Нержавеющая сталь A4, A ₅ > 8% твердость Класс стали 70 для ≤ M24 и класса 50 для M27 - M30, EN ISO 3506-1, EN 10088: 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
Резьбовая шпилька HAS-(E)HCR	Высококоррозионная сталь, EN ISO 3506-1, EN 10088: 1.4529; 1.4565 усилие \leq M20: R_m = 800 N/mm², $R_{p0.2}$ = 640 N/mm², A_5 > 8% твердость M24: R_m = 700 N/mm², $R_{p0.2}$ = 400 N/mm², A_5 > 8% твердость
	Оцинкованная сталь, EN ISO 4042; горячеоцинкованная сталь, EN ISO 10684
Шайба ISO 7089	Нержавеющая сталь, EN 10088: 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
	Высококоррозионная сталь, EN 10088: 1.4529; 1.4565
F.Y.	Класс стали 8, ISO 898-2 оцинкованная сталь ≥ 5 µm, EN ISO 4042 горячеоцинкованная сталь ≥ 45 µm, EN ISO 10684
Гайка EN ISO 4032	Класс стали 70, EN ISO 3506-2, нержавеющая сталь А4, EN 10088: 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
	Класс стали 70, EN ISO 3506-2, высококоррозионная сталь, EN 10088: 1.4529; 1.4565

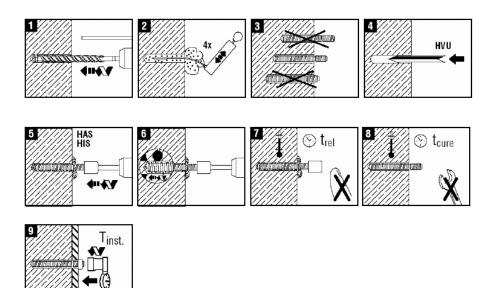
Размеры анкера

Размер анкера		M8	M10	M12	M16	M20	M24	M27	M30
Резьбовая шпилька HAS-E, HAS-R, HAS-ER HAS-HCR		M8x80	M10x90	M12x110	M16x125	M20x170	M24x210	M27x240	M30x270
Глубина посадки анкера	[mm]	80	90	110	125	170	210	240	270


Установка

Оборудование для установки

Размер анкера	M8	M10	M12	M16	M20	M24	M27	M30	
Перфоратор		TE 2 –	TE 16		TE 40 – TE 70				
Другое оборудование	компрессор или ручной насос, установочное устройство							0	


Инструкция по установке

Влажный и водонасыщеннный бетон, бурение перфоратором

Подробная информация по установке находится в инструкции, в каждой упаковке.

Для получения технических данных на оборудование алмазного бурения для установки анкеров, пожалуйста обратитесь к техническому консультанту компании HILTI.

Время набора прочности для общих условий

Данные согласно ЕТА-05/	0255, изданного 2011-06-23
Температура базового материала	Время набора прочности прежде чем анкер может быть полностью нагружен t _{cure}
20 °C - 40 °C	20 мин
10 °C - 19 °C	30 мин
0 °C - 9 °C	1 ч
-5 °C - (- 1 °C)	5 ч

Детали установки

			,	Данные (согласно	ETA-05/	0255, изд	анного 2	011-06-2	3
Размер анкера			M8	M10	M12	M16	M20	M24	M27	M30
Номинальный диаметр бура	d ₀	[mm]	10	12	14	18	24	28	30	35
Эффективная глубина анкеровки и глубина отверстия	h _{ef,мин}	[mm]	80	90	110	125	170	210	240	270
Минимальная толщина базового материала	h _{мин} ^{a)}	[mm]	110	120	140	170	220	270	300	340
Отверстие в закрепляемой детали	d_{f}	[mm]	9	12	14	18	22	26	30	33
Мин. осевое расст.	S _{MИН}	[mm]	40	45	55	65	90	120	130	135
Мин. краевое расст.	Смин	[mm]	40	45	55	65	90	120	130	135
Критическое осевое расстояние раскалывания	S _{cr,sp}					2 0	cr,sp			
Критическое краевое расстояние раскалывания Температурный диапазон I		1,0 · hef для h / h _{ef} ≥ 2,0 4,6 hef - 1,8 h для 2,0 > h / h _{ef} > 1,3 2,0 1,3					1,0·h _{el}	, 2,26·h _{ef}	C _{cr,sp}	
Критическое осевое расстояние для разрушения по конусу	S _{cr,N}					2 (Ccr,N			
Критическое краевое расстояние для разрушения по конусу	C _{cr,N}					1.5	5 Ч _{ef}			
Момент затяжки ^{b)}	T _{max}	[Nm]	10	20	40	80	150	200	270	300

Для межосевого расстояния (расстояние до края) меньшего чем критическое осевое расстояние (критическое расстояние до края) должны быть уменьшены расчетные нагрузки.

- a) h: толщина базового материала (h ≥ h_{мин})
- b) Максимальный рекомендуемый момент затяжки приведен, во избежании раскалывания во время установки анкеров с минимальными осевыми и краевыми расстояниями.

Упрощенный метод расчета

Упрощенная версия метода расчета согласно ETAG 001, Annex C. Расчетное сопротивление принимается согласно данным ETA-05/0255/0256/0257, изданного 2006-01-20.

- Влияние прочности бетона
- Влияние краевого расстояния
- Влияние осевого расстояния
- Действительно для группы из двух анкеров. (Метод может быть так же использован и для анкерных групп, состоящих более, чем из двух анкеров или с несколькими краевыми расстояниями. Понижающий коэффициент в этом случае должен быть учтен для каждого краевого и осевого расстояния. Расчетные нагрузки тогда прилагаются к оставшейся кромке: Они будут ниже, чем требуемое значение, согласно ETAG 001, Annex C. Чтобы избежать этого, рекомендуется использовать программное обеспечение PROFIS Anchor)

Метод расчета основан на следующем:

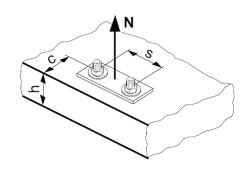
• На анкер не действуют посторонние нагрузки (эксцентриситет отсутствует)

Значения действительны только для одного анкера

Для более более сложных расчетов используйте программу PROFIS Anchor.

ВЫРЫВ

При расчете на вырыв принимается наименьшее:


- Прочность стали: **N**_{Rd.s}

- Комбинированная прочность бетона на вырыв и по конусу:

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{B,p} \cdot f_{h,p}$$

- Прочность бетона: $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$
- . Прочность бетона на раскалывание (только бетон без трещин)

$$N_{Rd,sp} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,sp} \cdot f_{re,N}$$

Базовое расчетное сопротивление на вырыв

Расчетное сопротивление стали NRds

				Данные согласно ЕТА-05/0255, изданного 2011-06-23									
Разме	ер анкера		M8	M10	M12	M16	M20	M24	M27	M30			
	HAS-(E)(F) 5.8	[kN]	11,3	17,3	25,3	48,0	74,7	106,7	-	-			
N.	HAS-(E)(F) 8.8	[kN]	18,0	28,0	40,7	76,7	119,3	170,7	231,3	281,3			
$N_{Rd,s}$	HAS-(E)-R	[kN]	12,3	19,8	28,3	54,0	84,0	119,8	75,9	92,0			
	HAS-(E)-HCR	[kN]	18,0	28,0	40,7	76,7	119,3	106,7	-	-			

Комбинированная прочность бетона на вырыв и по конусу $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{B,p} \cdot f_{h,p}$

				Данные с	согласно	ETA-05/0)255, изд	анного 2	011-06-23	3
Разме	р анкера		M8	M10	M12	M16	M20	M24	M27	M30
	Глубина посадки h _{ef,typ} [mm]			90	110	125	170	200	210	270
$N^0_{Rd,p}$	Температурный диапазон I	[kN]	16,7	23,3	33,3	40,0	76,7	93,3	133,3	166,7
$N^0_{Rd,p}$	Температурный диапазон II	[kN]	13,3	16,7	26,7	33,3	50,0	76,7	93,3	113,3
$N_{Rd,p}^0$	Температурный	[kN]	6,0	8,0	10,7	16,7	26,7	40,0	50,0	50,0

диапазон III				

Расчетное сопротивление бетона по конусу $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$ Расчетное сопротивление раскалыванию^{a)} $N_{Rd,sp} = N^0_{Rd,c} \cdot f_B \cdot f_{h,N} \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{re,N}$

			Данные согласно ЕТА-05/0255, изданного 2011-06-23									
Размер анкера		M8 M10 M12 M16 M20 M24 M27 M3										
$N_{Rd,c}^0$	[kN]	24,1 28,7 38,8 47,1 74,6 102,5							149,4			

а) Сопротивление раскалыванию необходимо учитывать только для бетона без трещин

Влияющие факторы

Влияние комбинированной прочности бетона на вырыв по конусу

Прочность бетона (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_{B,p} = (f_{ck,cube}/25N/mm^2)^{0.1 \ a)}$	1	1,03	1,06	1,09	1,10	1,12	1,13

а) $f_{ck,cube}$ = Прочность бетона на сжатие, измеренная в кубиках со стороной 150 мм

Влияние глубины анкеровки на комбинированную прочность бетона на вырыв и по конусу

$$f_{h,p} = 1$$

Влияние прочности бетона на сопротивление разрушению по конусу

Прочность бетона (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2}$	1	1,1	1,22	1,34	1,41	1,48	1,55

а) $f_{ck,cube}$ = Прочность бетона на сжатие, измеренная в кубиках со стороной 150 мм

Влияние краевого расстояния а)

C/C _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{1,N} = 0.7 + 0.3 \cdot c/c_{cr,N}$ $f_{1,sp} = 0.7 + 0.3 \cdot c/c_{cr,sp}$	0,73	0,76	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1
$f_{2,N} = 0.5 \cdot (1 + c/c_{cr,N})$ $f_{2,sp} = 0.5 \cdot (1 + c/c_{cr,sp})$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

а) Расстояние до кромки не должно быть меньше, чем минимальное расстояние до кромки с_{мин} приведенное в таблице раздела «Детали установки». Этот коэффициент должен быть учтен для каждого краевого расстояния, меньшего чем критического краевого расстояния.

Влияние осевого расстояния а)

s/s _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
s/s _{cr,sp}	0,1	0,2	0,5	0,4	0,0	0,0	0,7	0,0	0,3	•
$f_{3,N} = 0.5 \cdot (1 + s/s_{cr,N})$	0,55	0.60	0,65	0,70	0.75	0,80	0,85	0,90	0,95	1
$f_{3,sp} = 0.5 \cdot (1 + s/s_{cr,sp})$	0,55	0,60	0,05	0,70	0,75	0,60	0,00	0,90	0,95	

а) Межосевое расстояние не должно быть меньше, чем минимальное осевое расстояние ѕмин, приведенное в таблице раздела «Детали установки». Этот коэффициент должен быть учтен для каждого осевого расстояния, меньшее чем критическое осевое расстояние.

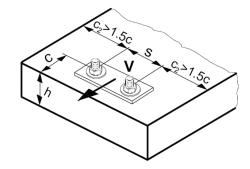
Влияние глубины посадки на сопротивление разрушению по конусу

 $f_{h,N} = 1$

Влияние армирования

h _{ef} [mm]	40	50	60	70	80	90	≥ 100
$f_{re,N} = 0.5 + h_{ef}/200 \text{mm} \le 1$	0.7 ^{a)}	0.75 ^{a)}	0.8 ^{a)}	0.85 ^{a)}	0.9 ^{a)}	0.95 ^{a)}	1

а) Этот коэффициент применяется только для сильного армирования. Если в области анкера имеется арматурное укрепление с межосевым расстоянием ≥ 150 мм или с диаметром ≤ 10 мм и межосевым расстоянием ≥ 100 мм, то можно применить коэффициент fre = 1.


CPE3

При расчете на срез принимается наименьшее

- Прочность стали: **V**_{Rd.s}

_ Прочность бетона: $V_{Rd,cp} = k \cdot \text{меньшее } N_{Rd,p} \text{ and } N_{Rd,c}$

- Прочность кромки бетона: $V_{Rd,c} = V^0_{Rd,c} \cdot f_B \cdot f_B \cdot f_B \cdot f_4 \cdot f_4$

Базовое расчетное сопротивление на срез

Расчетное сопротивление стали V_{Rd,s}

				Данные согласно ЕТА-05/0255, изданного 2011-06-23										
Разме	ер анкера		M8	M10	M12	M16	M20	M24	M27	M30				
	HAS -(E)	[kN]	6,6	10,6	15,2	28,8	44,9	64,1	138,8	168,6				
	HAS -(E)F	[kN]	10,6	16,9	24,4	46,1	71,8	102,6	138,8	168,6				
$V_{Rd,s}$	HAS (-E)-R	[kN]	7,5	11,9	17,1	32,4	50,5	72,1	45,5	55,3				
	HAS (-E)-HCR	[kN]	10,6	16,9	24,4	46,1	71,8	64,1	-	-				

асчетное сопротивление бетона $V_{Rd,cp}$ = меньшее значение $^{a)}$ k \cdot $N_{Rd,p}$ и k \cdot $N_{Rd,c}$

Размер анкера	M8	M10	M12	M16	M20	M24	M27	M30
k				2	2			

N_{Rd,p}: Комбинированная прочность бетона на вырыв и по конусу
 N_{Rd,c}: Расчетное сопротивление разрушения бетона по конусу

Расчетное сопротивление кромки бетона ^{а)} $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_B \cdot f_4 \cdot f_4$

Размер анкера	M8	M10	M12	M16	M20	M24	M27	M30
$V^0_{Rd,c}$ [kN]	5,9	8,5	11,6	18,8	27,3	37	45,1	53,8

а) Для группы анкеров, необходимо рассмотреть только те анкера, которые расположенны близко к краю.

Влияющие факторы

Влияние прочности бетона

Прочность бетона (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2 a})$	1	1,1	1,22	1,34	1,41	1,48	1,55

а) f_{ck,cube} = Прочность бетона на сжатие, измеренная в кубиках со стороной 150 мм

Влияние угла наклона нагрузки, действующей в направлении кромки

Угол В	0°	10°	20°	30°	40°	50°	60°	70°	80°	≥ 90°
$f_{\beta} = \sqrt{\frac{1}{(\cos \alpha_{\nu})^{2} + \left(\frac{\sin \alpha_{\nu}}{2,5}\right)^{2}}}$	1	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

Влияние толщины базового материала

h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	≥ 1,5
$f_h = \{h/(1,5 \cdot c)\}^{1/2} \le 1$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

Влияние осевого и краевого расстояния ^{а)} для сопротивления бетонной кромки: $f_4 = (c/h_{ef})^{1,5} \cdot (1 + s / [3 \cdot c]) \cdot 0,5$

	Один			-1,		Г	труппа	а из ді	вух ан	керов	s s/he	f				
c/h _{ef}	анкер	0,75	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50	8,25	9,00	9,75	10,50	11,25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10,02	10,31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10,26	10,55	10,85

а) Минимальное краевое расстояние и осевое расстояние не должно быть меньше минимального межосевого расстояния $s_{\text{мин}}$ и минимальное расстояние до кромки $c_{\text{мин}}$.

Влияние глубины установки

Размер анкера	M8	M10	M12	M16	M20	M24	M27	M30
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	2,39	2	2,07	1,58	1,82	1,91	1,96	2

Влияние краевых расстояний а)

c/d	4	6	8	10	15	20	30	40
$f_c = (d / c)^{0,19}$	0,77	0,71	0,67	0,65	0,60	0,57	0,52	0,50

а) Минимальное краевое расстояние не должно быть меньше минимального расстояние до кромки смин.

Комбинированная нагрузка на вырыв и срез

Для комбинированной нагрузки на вырыв и срез смотри раздел «Расчет анкеров».

Расчетные величины

Рекомендованные нагрузки могут быть посчитаны делением расчетной нагрузки на частный коэффициент безопасности γ = 1,4. Частный коэффициент запаса зависит от типа нагрузки и должен быть принят в соответствии с национальными нормами.

Расчетное сопротивление: бетон C 20/25 - $f_{ck,cube}$ = 25 N/mm²

				CK,CUDC						
				Данные (согласно	ETA-05/0	0255, изд	анного 2	011-06-23	3
Размер а	нкера		M8	M10	M12	M16	M20	M24	M27	M30
Углероди	истая сталь, проч	ность	5.8	5.8	5.8	5.8	5.8	5.8	8.8	8.8
Глубина у	/становки h _e	f: [mm]	80	90	110	125	170	210	240	270
Толщира материал		_n : [mm]	110	120	140	170	220	270	300	340
	Вырыв N _{Rd} : оди	ин анкер	, влияни	е кромки	отсутст	вует				
	HAS-(E)(F)	[kN]	11,3	17,3	25,3	40,0	74,6	93,3	125,2	149,4
	HAS-(E)-R	[kN]	12,3	19,8	28,3	40,0	74,6	93,3	75,9	92,0
	HAS-(E)-HCR	[kN]	16,7	23,3	33,3	40,0	74,6	93,3	-	-
	Срез V _{Rd} : один	анкер, в	пияние к	ромки от	гсутству	ет, сила і	приложе	на без пл	іеча	
	HAS-(E)(F)	[kN]	6,8	10,4	15,2	28,8	44,8	64,0	139,2	168,8
	HAS-(E)-R	[kN]	7,7	11,5	17,3	32,7	50,6	71,8	45,4	55,5
	HAS-(E)-HCR	[kN]	9,6	14,4	21,6	40,8	63,2	64,0	-	-

Расчетное сопротивление: бетон С 20/25 - $f_{ck,cube}$ = 25 N/mm²

	•			CK,CUDC						
				Данные с	согласно	ETA-05/0	0255, изд	анного 2	011-06-23	3
Размер а	нкера		M8	M10	M12	M16	M20	M24	M27	M30
Углероди	стая сталь, проч	юсть	5.8	5.8	5.8	5.8	5.8	5.8	8.8	8.8
Глубина у	становки h _{ef} :	[mm]	80	90	110	125	170	210	240	270
Толщира материал		[mm]	110	120	140	170	220	270	300	340
Расстоян	ие до края с = c _{min} :	[mm]	40	45	55	65	90	120	130	135
A	Вырыв N _{Rd} : один	н анкер	, мин. Ра	сстояни	е до кром	ики (c = c	min)			
	HAS-(E)(F)	[kN]	9,4	12,7	18,2	22,0	35,5	49,8	59,9	69,9
	HAS-(E)-R	[kN]	9,4	12,7	18,2	22,0	35,5	49,8	59,9	69,9
Cmin	HAS-(E)-HCR	[kN]	9,4	12,7	18,2	22,0	35,5	49,8	-	-
	Срез V _{Rd} : один а	нкер, м	ин. Расс [.]	гояние д	о кромки	(c = c _{min}), сила п	риложен	а без пле	ча
	HAS-(E)(F)	[kN]	3,7	4,7	6,6	8,9	15,1	23,6	27,7	30,7
	HAS-(E)-R	[kN]	3,7	4,7	6,6	8,9	15,1	23,6	27,7	30,7
C _{min}	HAS-(E)-HCR	[kN]	3,7	4,7	6,6	8,9	15,1	23,6	-	_

Расчетное сопротивление: бетон C 20/25 - $f_{ck,cube}$ = 25 N/mm² (нагрузки действительны для одиночного анкера)

			Данные согласно ЕТА-05/0255, изданного 2011-06-						011-06-23	3
Размер а	нкера		M8	M10	M12	M16	M20	M24	M27	M30
Углероди	стая сталь, прочн	ость	5.8	5.8	5.8	5.8	5.8	5.8	8.8	8.8
Глубина у	становки h _{ef} :	[mm]	80	90	110	125	170	210	240	270
Толщира материал	_	[mm]	110	120	140	170	220	270	300	340
Межосево	ре расстояниеs = s,	[mm]	40	45	55	65	90	120	130	135
	Вырыв N _{Rd} : два а	нкера	, влияни	е кромки	отсутст	вует, мин	і. межос	вое рас	стояние	$(s = s_{min})$
	HAS-(E)(F)	[kN]	10,9	14,6	20,6	24,8	41,7	57,7	70,1	82,9
	HAS-(E)-R	[kN]	10,9	14,6	20,6	24,8	41,7	57,7	70,1	82,9
Smin	HAS-(E)-HCR	[kN]	10,9	14,6	20,6	24,8	41,7	57,7	-	-
	Срез V _{Rd} : два анк	ера, вл	пияние к	ромки от	сутствуе	т, мин. м	ежосево	е рассто	яние (s =	= s _{min}),
	сила приложена	без пл	еча							
Smin	HAS-(E)(F)	[kN]	6,8	10,4	15,2	28,8	44,8	64,0	139,2	168,8
	HAS-(E)-R	[kN]	7,7	11,5	17,3	32,7	50,6	71,8	45,4	55,5
	HAS-(E)-HCR	[kN]	9,6	14,4	21,6	40,8	63,2	64,0	-	-

Hilti HVU с втулкой HIS-(R)N

Химическая система		Преимущества
HVU M20x170 HVU M20x170 HVU M2. (7/8" x 6 5/8") (7/8" x 6 5/8") (7/8" x 6 5/8")	Hilti HVU химическая капсула	 подходит для бетона без трещин С 20/25 - С 50/60 высокая несущая способность подходит для сухого и влажного бетона
	HIS-(R)N Втулка	

Бетон

Малые

Соответствует критериям межосевые и пожародо кромки

безопасности

Европейский сертификат

CE

Программа расчета **PROFIS**

Сертификаты / свидетельства

Описание	Институт / Лаборатория	№. / Дата выпуска
Европейский сертификат ^{а)}	DIBt, Берлин	ETA-05/0255 / 2011-06-23
Отчет об испытаниях на огнестойкость	IBMB, Braunschweig	UB-3333/0891-1 / 2004-03-26
Оценочный отчет (огнестойкость)	warringtonfire	WF 166402 / 2007-10-26

а) Все данные раздела приводятся согласно

ETA-05/0255, bplfyyjuj 2011-06-23

Базовая нагрузка (для одиночно установленного анкера)

Все данные в этом разделе указаны для случая, когда: Для подробной информации смотрите расчет

- Анкер установлен корректно (См. инструкцию по установке)
- Отсутствует влияние межосевых расстояний и расстояний до кромки
- Разрушение происходит по стали
- Класс стали болта 8.8
- Толщина базового материала, согласно спецификации по таблице
- Одна глубина посадки, согласно спецификации по таблице
- Один материал анкера, согласно спецификации по таблице
- Бетон C 20/25, $f_{ck,cube} = 25 \text{ N/mm}^2$
- Температурный диапазон
 - (Минимальная температура базового материала -40°C, максимальная температура базового материала: +24°C/40°C)

Температурный диапазон установки от -5°C до +40°C

Глубина анкеровки и толщина базового материала для базовых нагрузок. Ультимативное сопротивление, характеристическое сопротивление, расчетное сопротивление, рекомендуемая нагрузка.

Размер анкера	M8	M10	M12	M16	M20
Глубина посадки [mm]	90	110	125	170	205
Толщина базового материала	120	150	180	250	350
[mm]					

Ультимативное сопротивление: бетон С 20/25 - f_{ck,cube} = 25 N/mm², анкер HIS-N

			Данные согласно ЕТА-05/0255, изданного 2011-06-23				-06-23
Размер анкер	а		M8	M10	M12	M16	M20
Вырыв N _{Ru,m}	HIS-N	[kN]	26,3	48,3	70,4	123,9	114,5
Срез V _{Ru,m}	HIS-N	[kN]	13,7	24,2	41,0	62,0	57,8

Характеристическое сопротивление: бетон С 20/25 – $f_{ck,cube}$ = 25 N/mm², анкер HIS-N

			Данные согласно ЕТА-05/0255, изданного 2011-06-23				-06-23
Размер анке	ра		M8	M10	M12	M16	M20
Вырыв N _{Rk}	HIS-N	[kN]	25,0	40,0	60,0	95,0	109,0
Срез V _{Rk}	HIS-N	[kN]	13,0	23,0	39,0	59,0	55,0

Расчетное сопротивление: бетон С 20/25 – $f_{ck,cube}$ = 25 N/mm², анкер HIS-N

			Данные согласно ЕТА-05/0255, изданного 2011-06-23				-06-23
Размер анке	ра		M8	M10	M12	M16	M20
Вырыв N_{Rd}	HIS-N	[kN]	16,7	26,7	40,0	63,3	74,1
Срез V _{Rd}	HIS-N	[kN]	10,4	18,4	26,0	39,3	36,7

Рекомендуемые нагрузки $^{a)}$: бетон С 20/25 – $f_{ck,cube}$ = 25 N/mm², анкер HIS-N

			Данные согласно ЕТА-05/0255, изданного 2011-06-23				-06-23
Размер анке	ра		M8	M10	M12	M16	M20
Вырыв N _{rec}	HIS-N	[kN]	11,9	19,0	28,6	45,2	53,0
Срез V _{rec}	HIS-N	[kN]	7,4	13,1	18,6	28,1	26,2

а) С коэффициентом безопасности γ = 1,4. Коэффициенты безопасности зависят от типа загружения и должны быть приняты в соответствии с местными нормами.

Температурный диапазон эксплуатации

Химический анкер HVU, может использоваться в температурном диапазоне приведенном ниже. Высокая температура базового материала может привести к снижению прочности сцепления.

Температурный диапазон	Температура базового материала	Максимальная продолжительная температура	Максимальная кратковременная температура
Температурный диапазон I	от -40 °C до +40 °C	+24 °C	+40 °C
Температурный диапазон II	от -40 °C до +80 °C	+50 °C	+80 °C
Температурный диапазон III	от -40 °C до +120 °C	+72 °C	+120 °C

Макс. кратковременная температура базового материала

Кратковременно повышающаяся температура базового материала, это кратковременно изменяющаяся температура через определенные интервалы времени напр. суточные изменения температуры.

Макс. продолжительная температура базового материала

Долговременно повышающаяся температура базового материала – температура базового материала повышающаяся на протяжении довольно продолжительного промежутка времени.

Материалы

Механические свойства HIS-(R)N

			Данные	согласно ЕТА	- 05/0255/0256,	изданного 20	11-06-23
Размер анке	ра		M8	M10	M12	M16	M20
	HIS-N	[N/mm²]	490	490	460	460	460
Номин.	Болт 8.8	[N/mm²]	800	800	800	800	800
усилие на вырыв fuk	HIS-RN	[N/mm²]	700	700	700	700	700
BBIPBIB TUR	Болт А4-70	[N/mm²]	700	700	700	700	700
	HIS-N	[N/mm²]	410	410	375	375	375
Предел	Болт 8.8	[N/mm²]	640	640	640	640	640
текучести f _{yk}	HIS-RN	[N/mm²]	350	350	350	350	350
	Болт А4-70	[N/mm²]	450	450	450	450	450
Напряжен.	HIS-(R)N	[mm²]	51,5	108,0	169,1	256,1	237,6
поперечн. сечение A _s	Болт	[mm²]	36,6	58	84,3	157	245
Момент сопротивле ния W	HIS-(R)N	[mm³]	145	430	840	1595	1543
	Болт	[mm³]	31,2	62,3	109	277	541

Качество материала

Элемент	Материал
Резбовая втулка с внутреннней резьбой ^{а)} HIS-N	С-сталь 1.0718, оцинкованная сталь ≥ 5μm
Резбовая втулка с внутреннней резьбой ^{b)} HIS-RN	Нержавеющая сталь 1.4401 and 1.4571

а) подходящая шпилька: Класс стали 8.8 EN ISO 898-1, A5 > 8% твердость

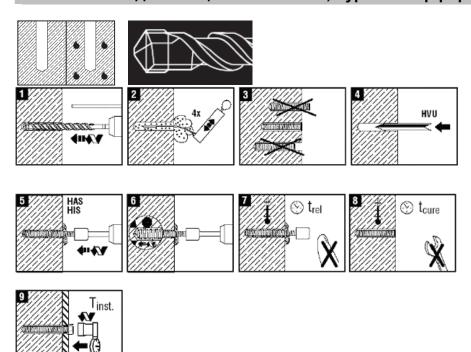
оцинкованная сталь ≥ 5μm

b) подходящая шпилька: Класс стали 70 EN ISO 3506-1, A5 > 8% твердость

Нержавеющая сталь 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362

Размеры анкера

Размер анкера		M8	M10	M12	M16	M20
Втулка с внутренней резьбой HIS-(R)N		M8x90	M10x110	M12x125	M16x170	M20x205
Глубина посадки анкера	[mm]	90	110	125	170	205


Установка

Оборудование для установки

Размер анкера	M8	M10	M12	M16	M20	
Перфоратор	TE2 – TE16		TE40 - TE70			
Другое оборудование	компрессор или ручной насос, установочное устройство				ойство	

Инструкция по установке

Влажный и водонасыщеннный бетон, бурение перфоратором

Подробная информация по установке находится в инструкции, в каждой упаковке.

Для получения технических данных на оборудование алмазного бурения для установки анкеров, пожалуйста обратитесь к техническому консультанту компании HILTI.

Время набора прочности для общих условий

Данные согласно ЕТА-05/0255/0256, изданного 2011-06-23					
Температура базового материала	Время набора прочности прежде чем анкер может быть полностью нагружен t _{cure}				
20 °C - 40 °C	20 мин				
10 °C - 19 °C	30 мин				
0 °C - 9 °C	1 ч				
-5 °C - (- 1 °C)	5 ч				

Детали установки

			Данные	согласно ЕТ/	A- 05/0255/0256,	изданного 20	011-06-23
Размер анкера			M8	M10	M12	M16	M20
Номинальный диаметр бура	d ₀	[mm]	14	18	22	28	32
Диаметр элемента	d	[mm]	12,5	16,5	20,5	25,4	27,6
Эффективная глубина анкеровки и глубина отверстия	h _{ef}	[mm]	90	110	125	170	205
Минимальная толщина базового материала	h _{мин} ^{а)}	[mm]	120	150	170	230	270
Отверстие в закрепляемой детали	d _f	[mm]	9	12	14	18	22
Глубина проникновения резьбы ; min - max	h _s	[mm]	8-20	10-25	12-30	16-40	20-50
Мин. осевое расст.	S _{MИН}	[mm]	40	45	60	80	125
Мин. краевое расст.	Смин	[mm]	40	45	60	80	125
Критическое осевое расстояние раскалывания	S _{cr,sp}				2 c _{cr,sp}		
Критическое краевое	$h_{\scriptscriptstyle{\text{MUH}}}$	[mm]	120	150	180	250	350
расстояние	C _{cr,sp}	[mm]	90	150	250	340	410
раскалывания Температурный	h _{мин}	[mm]	-	220	250	340	410
диапазон I	C _{cr,sp}	[mm]	-	110	125	170	250
Критическое осевое расстояние для разрушения по конусу	S _{cr,N}				2 c _{cr,N}		
Критическое краевое расстояние для разрушения по конусу	C _{cr,N}				1.5 ч _{ef}		
Момент затяжки ^{b)}	T_{max}	[Nm]	10	20	40	80	150
			L CO	S			

Для межосевого расстояния (расстояние до края) меньшего чем критическое осевое расстояние (критическое расстояние до края) должны быть уменьшены расчетные нагрузки.

- a) h: толщина базового материала (h ≥ h_{мин})
- b) Максимальный рекомендуемый момент затяжки приведен, во избежании раскалывания во время установки анкеров с минимальными осевыми и краевыми расстояниями.

Упрощенный метод расчета

Упрощенная версия метода расчета согласно ETAG 001, Annex C. Расчетное сопротивление принимается согласно данным ETA-05/0255, изданного 2011-06-23.

- Влияние прочности бетона
- Влияние краевого расстояния
- Влияние осевого расстояния
- Действительно для группы из двух анкеров. (Метод может быть так же использован и для анкерных групп, состоящих более, чем из двух анкеров или с несколькими краевыми расстояниями. Понижающий коэффициент в этом случае должен быть учтен для каждого краевого и осевого расстояния. Расчетные нагрузки тогда прилагаются к оставшейся кромке: они будут ниже, чем требуемое значение, согласно ETAG 001, Annex C. Чтобы избежать этого, рекомендуется использовать программное обеспечение PROFIS Anchor)

Метод расчета основан на следующем:

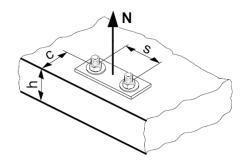
• На анкер не действуют посторонние нагрузки (эксцентриситет отсутствует)

Значения действительны только для одного анкера

Для более более сложных расчетов используйте программу PROFIS Anchor.

ВЫРЫВ

При расчете на вырыв принимается наименьшее:


Прочность стали: N_{Rd.s}

- Комбинированная прочность бетона на вырыв и по конусу:

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{B,p} \cdot f_{h,p}$$

- Прочность бетона: $\mathbf{N}_{\mathrm{Rd,c}} = \mathbf{N}^0_{\mathrm{Rd,c}} \cdot \mathbf{f}_{\mathrm{B}} \cdot \mathbf{f}_{1,\mathrm{N}} \cdot \mathbf{f}_{2,\mathrm{N}} \cdot \mathbf{f}_{3,\mathrm{N}} \cdot \mathbf{f}_{\mathrm{h,N}} \cdot \mathbf{f}_{\mathrm{re,N}}$
- . Прочность бетона на раскалывание (только бетон без трещин)

$$N_{Rd,sp} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,sp} \cdot f_{re,N}$$

Базовое расчетное сопротивление на вырыв

Расчетное сопротивление стали N_{Rd.s}

			Данны	Данные согласно ЕТА-05/0255, изданного 2011-06-23							
Разме	ер анкера		M8	M10	M12	M16	M20				
NI	HIS-N	[kN]	16,8	30,7	44,7	80,3	74,1				
$N_{Rd,s}$	HIS-RN	[kN]	13,9	21,9	31,6	58,8	69,2				

Комбинированная прочность бетона на вырыв и по конусу $N_{Rd,p} = N_{Rd,p}^0 \cdot f_{B,p} \cdot f_{h,p}$

			Данн	ые согласно Е	ТА-05/0255, из	зданного 2011	-06-23
Разме	р анкера		M8	M10	M12	M16	M20
Глуби h _{ef} [mi	на посадки m]		90	110	125	170	205
$N^0_{Rd,p}$	Температурный диапазон I	[kN]	16,7	26,7	40,0	63,3	93,3
$N^0_{Rd,p}$	Температурный диапазон II	[kN]	13,3	23,3	33,3	50,0	63,3
$N^0_{Rd,p}$	Температурный диапазон III	[kN]	6,0	10,7	13,3	26,7	33,3

Расчетное сопротивление бетона по конусу $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$ Расчетное сопротивление раскалыванию $N_{Rd,sp} = N^0_{Rd,c} \cdot f_B \cdot f_{h,N} \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{re,N}$

		Данн	Данные согласно ЕТА-05/0255, изданного 2011-06-23							
Размер анкера		M8 M10 M12 M16 M								
N ⁰ _{Rd,c}	[kN]	28,7	38,8	47,1	74,6	98,8				

а) Сопротивление раскалыванию необходимо учитывать только для бетона без трещин

Влияющие факторы

Влияние комбинированной прочности бетона на вырыв по конусу

Прочность бетона (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_{B,p} = (f_{ck,cube}/25N/mm^2)^{0,28 \ a)}$	1	1,05	1,12	1,18	1,21	1,25	1,28

а) $f_{ck, cube}$ = Прочность бетона на сжатие, измеренная в кубиках со стороной 150 мм

Влияние глубины анкеровки на комбинированную прочность бетона на вырыв и по конусу

$$f_{h,p} = 1$$

Влияние прочности бетона на сопротивление разрушению по конусу

Прочность бетона (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2}$	1	1,1	1,22	1,34	1,41	1,48	1,55

а) $f_{ck,cube}$ = Прочность бетона на сжатие, измеренная в кубиках со стороной 150 мм

Влияние краевого расстояния а)

C/C _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{1,N} = 0.7 + 0.3 \cdot c/c_{cr,N}$ $f_{1,sp} = 0.7 + 0.3 \cdot c/c_{cr,sp}$	0,73	0,76	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1
$f_{2,N} = 0.5 \cdot (1 + c/c_{cr,N})$ $f_{2,sp} = 0.5 \cdot (1 + c/c_{cr,sp})$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

Расстояние до кромки не должно быть меньше, чем минимальное расстояние до кромки с_{мин} приведенное в таблице раздела «Детали установки». Этот коэффициент должен быть учтен для каждого краевого расстояния, меньшего чем критического краевого расстояния.

Влияние осевого расстояния а)

s/s _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{3,N} = 0.5 \cdot (1 + s/s_{cr,N})$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1
$f_{3,sp} = 0.5 \cdot (1 + s/s_{cr,sp})$,,,,,	0,00	0,00	0,. 0	0,.0	0,00	0,00	0,00	0,00	

межосевое расстояние не должно быть меньше, чем минимальное осевое расстояние ѕмин, приведенное в таблице раздела «Детали установки». Этот коэффициент должен быть учтен для каждого осевого расстояния, меньшее чем критическое осевое расстояние.

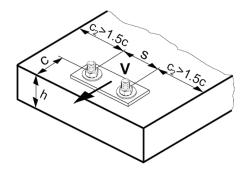
Влияние глубины посадки на сопротивление разрушению по конусу

 $f_{h.N} = 1$

Влияние армирования

h _{ef} [mm]	80	90	≥ 100
$f_{re,N} = 0.5 + h_{ef}/200 \text{mm} \le 1$	0.9 ^{a)}	0.95 ^{a)}	1

а) Этот коэффициент применяется только для сильного армирования. Если в области анкера имеется арматурное укрепление с межосевым расстоянием ≥ 150 мм или с диаметром ≤ 10 мм и межосевым расстоянием ≥ 100 мм, то можно применить коэффициент fre = 1.


CPE3

При расчете на срез принимается наименьшее

- Прочность стали: **V**_{Rd.s}

_ Прочность бетона: $V_{Rd,cp} = \mathbf{k} \cdot \text{меньшее } \mathbf{N}_{Rd,p} \text{ и } \mathbf{N}_{Rd,c}$

- Прочность кромки бетона: $V_{Rd,c} = V^0_{Rd,c} \cdot f_B \cdot f_{\mathfrak{g}} \cdot f_{\mathfrak{q}} \cdot f_4$

Базовое расчетное сопротивление на срез

Расчетное сопротивление стали V_{Rd.s}

			Данны	Данные согласно ЕТА-05/0255, изданного 2011-06-23						
Разме	ер анкера		M8	M10	M12	M16	M20			
\/	HIS-N	[kN]	10,4	18,4	26,0	39,3	36,7			
$V_{Rd,s}$	HIS-RN	[kN]	8,3	12,8	19,2	35,3	41,5			

Расчетное сопротивление бетона $V_{Rd,cp}$ = меньшее значение $^{a)}$ $k \cdot N_{Rd,p}$ и $k \cdot N_{Rd,c}$

Размер анкера	M8	M10	M12	M16	M20
k			2		

а) N_{Rd,p}: Комбинированная прочность бетона на вырыв и по конусу N_{Rd,c}: Расчетное сопротивление разрушения бетона по конусу

Расчетное сопротивление кромки бетона ^{a)} $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_B \cdot f_A \cdot f_A$

•		•	,-	,	= =	
Размер анкера		M8	M10	M12	M16	M20
$V_{\rm Bd}^{0}$	[kN]	12,4	19,8	28,4	40,7	46,8

а) Для группы анкеров, необходимо рассмотреть только те анкера, которые расположенны близко к краю.

Влияющие факторы

Влияние прочности бетона

Прочность бетона (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2 a}$	1	1,1	1,22	1,34	1,41	1,48	1,55

а) $f_{ck,cube}$ = Прочность бетона на сжатие, измеренная в кубиках со стороной 150 мм

Влияние угла наклона нагрузки, действующей в направлении кромки

Угол В	0°	10°	20°	30°	40°	50°	60°	70°	80°	≥ 90°
$f_{\beta} = \sqrt{\frac{1}{(\cos \alpha_{\nu})^{2} + \left(\frac{\sin \alpha_{\nu}}{2,5}\right)^{2}}}$	1	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

Влияние толщины базового материала

h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	≥ 1,5
$f_h = \{h/(1,5 \cdot c)\}^{1/2} \le 1$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

Влияние осевого и краевого расстояния ^{а)} для сопротивления бетонной кромки: f_4 = $(c/h_{ef})^{1,5} \cdot (1+s/[3\cdot c]) \cdot 0,5$

	orrier) (1	•	5 1)	,•											-
c/h _{ef}	Один					Г	-руппа	а из ді	зух ан	керов	s/he	f				
0,116	анкер	0,75	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50	8,25	9,00	9,75	10,50	11,25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10,02	10,31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10,26	10,55	10,85

а) Минимальное краевое расстояние и осевое расстояние не должно быть меньше минимального межосевого расстояния $s_{\text{мин}}$ и минимальное расстояние до кромки $c_{\text{мин}}$.

Влияние глубины установки

Размер анкера	M8	M10	M12	M16	M20	
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	1,38	1,21	1,04	1,22	1,45	

Влияние расстояния до края а)

c/d	4	6	8	10	15	20	30	40
$f_c = (d / c)^{0.19}$	0,77	0,71	0,67	0,65	0,60	0,57	0,52	0,50

а) Минимальное краевое расстояние не должно быть меньше минимального расстояния до кромки смин.

Комбинированная нагрузка на вырыв и срез

Для комбинированной нагрузки на вырыв и срез смотри раздел «Расчет анкеров».

Расчетные величины

Рекомендованные нагрузки могут быть посчитаны делением расчетной нагрузки на частный коэффициент безопасности γ = 1,4. Частный коэффициент запаса зависит от типа нагрузки и должен быть принят в соответствии с национальными нормами.

Расчетное сопротивление: бетон C 20/25 - $f_{ck,cube}$ = 25 N/mm²

	-			- ,						
		Данные согласно ЕТА-05/0255, изданного 2011-06-23								
Размер а	нкера		M8	M10	M12	M16	M20			
Глубина г	тосадки	h _{ef} : [mm]	90	110	125	170	205			
Толщина материал		h _{мин} : [mm]	120	150	170	230	270			
Вырыв N _{Rd} : один анкер, влияние кромки отсутствует										
	HIS-N	[kN]	16,7	26,7	40,0	63,3	74,1			
	HIS-RN	[kN]	13,9	21,9	31,6	58,8	69,2			
	Cpes V _{Rd} :	один анкер, в	лияние кромк	и отсутствует	г, сила прилох	кена без плеч	a			
	HIS-N	[kN]	10,4	18,4	26,0	39,3	36,7			
	HIS-RN	[kN]	8,3	12,8	19,2	35,3	41,5			

Расчетное сопротивление: бетон C 20/25 – $f_{ck,cube}$ = 25 N/mm²

			Данны	Данные согласно ЕТА-05/0255, изданного 2011-06-23									
Размер а	нкера		M8	M10	M12	M16	M20						
Глубина п	осадки h _{ef} :	[mm]	90	110	125	170	205						
Толщина материал		[mm]	120	150	180	250	350						
Расстоян	ие до края с = с _{мин} :	[mm]	40	45	60	80	125						
1	Вырыв N _{Rd} : один	і анкер	, мин. рассто	яние до кромн	$(n (c = c^{MnH}))$								
Cmin	HIS-(R)N	[kN]	10,0	13,7	18,7	28,6	43,6						
	Срез V _{Rd} : один ан	нкер, и	ин. расстояні	ие до кромки (с = с _{мин}) , сила	а приложена б	без плеча						
Cmin	HIS-(R)N	[kN]	2,8	3,8	5,6	8,1	14,1						

Расчетное сопротивление: бетон С 20/25 - $f_{ck,cube}$ = 25 N/mm² (нагрузки действительны для одиночного анкера)

	Данные согласно ЕТА-05/0255, изданного 2011-06-23									
Размер анкера	M8	M10	M12	M16	M20					
Глубина посадки h _{ef} : [mm]	90	110	125	170	205					
Толщина базового материала $h_{\text{мин}}$: [mm]	120	150	170	230	270					
Межосевое расстояние $s = s \ [mm]$	40	45	60	80	125					
Вырыв N _{Rd} : два анкера расстояние (s = s _{мин})	а, влияние кро	мки отсутсву	ет, минималы	ное межосево	е					
S _{min} HIS-(R)N [kN]	10,2	15,3	22,2	34,7	51,8					
Срез V _{Rd} : два анкера, влияние кромки отсутсвует, минимальное межосевое расстояние (= s _{мин}) , сила приложена без плеча										
HIS-N [kN]	10,4	18,4	26,0	39,3	36,7					
HIS-RN [kN]	8,3	12,8	19,2	35,3	41,5					