

HIT-CT 100 INJECTION MORTAR

Product Technical Datasheet Concrete-to-concrete Update: Jun 24

HIT-CT 100 injection mortars

Rebar design (EN 1992-1, EN 1998-1) / Rebar elements / Concrete

Application condition

Base mater	ial	Load conditions		
Concrete	Concrete	Static/	Fire	
(uncracked)	(cracked)	quasi-static	Resistance	
Installation	conditions	Other information	1	
<u></u>		Å		
Hammer drilled holes	Hollow drill bit drilling	PROFIS Engineering Design Software	Concrete-to- Concrete connections Handbook	

Linked Approvals/Certificates

Approval no	Application / loading condition	Authority / Laboratory	Date of issue
ETA-24/0147	Static and quasi-static / Fire	CSTB, Paris	30-04-2024

Linked Instructions for use

Material						
Injection mortar	IFU Hilti HIT-CT 100	-	-			
Dispenser	IFU HDM	IFU HDE 500-22	IFU HDE 500-A12			

Links/QR codes to Hilti Webpage

Injection mortars / Dispenser							
Hilti HIT-CT 100	HDE 500-22	HDE 500-A12	<u>HDM 500</u>				

Mechanical properties and dimensions rebar

Mechanical properties and dimensions of the rebars are standardized and can be taken from the ETA

Material quality

Part	Material
Rebar	Bars and de-coiled rods class B or C according to NDP or NCL of EN 1992-1-1

Static and quasi-static loading based on ETA-24/0147. Design according to EN 1992-1-1

Note the following for the data in this section:

For poor bond conditions multiply the values by 0,7. Values valid for uncracked and cracked concrete.

Design bond strength in N/mm² for good bond conditions for all drilling methods according to mortar IFU.

Pohar cizo	Concrete class								
Nebal - 3126	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
[mm]		fbd,PIR [N/mm ²]							
φ8 - φ25	1,6	2,0	2,3	2,7	3,0	3,0	3,0	3,0	3,0

Minimum anchorage length and minimum lap length

Post-installed rebar applications as per EN 1992-1-1	Typical examples
Lap splice applications	
End anchorage applications simply supported / compression load-only connections	

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according for applications designed as per EN 1992-1-1 shall be multiplied by relevant **Amplification factor** α_{lb} in the table below.

Amplification factor α_{lb} for the min. anchorage length and min. lap length for all drilling methods.

Babar aiza	Concrete class								
Repar - size	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
[mm]		αњ [-]							
φ8 - φ25		1,0		1,2			1,4		

Refer to the table for data on dispensers and corresponding maximum embedment depth $\ell_{v,max}$ due to mortar installation limitations

Minimum Anchorage length and lap length for characteristic steel strength fyk = 500 N/mm² for good bond conditions

For specific design cases refer to PROFIS Engineering.

Rebar- size [mm]	Concrete class	Design Resistance (Yielding)	Ib,min ¹⁾	l _{o,min²⁾}	$I_{bd,y}$ $(\alpha_2=1)^{3)}$	$I_{bd,y}$ ($\alpha_2=0.7$) ⁴⁾	$I_{o,PIR,y}$ $(\alpha_2=1)^{5)}$	l _{o,PIR,y} (α ₂ =0.7) ⁶⁾
F1		[kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
48	C20/25	21.0	112	200	375	262	562	394
ψυ	C30/37 to C50/60	21,5	140	280	291	204	436	305
410	C20/25	2/1	141	211	469	328	703	492
φισ	C30/37 to C50/60	54,1	153	280	364	255	545	382
412	C20/25	40.2	169	253	562	394	843	590
φιΖ	C30/37 to C50/60	49,2	183	280	436	305	654	458
114	C20/25	66.0	197	295	656	459	984	689
φ14	C30/37 to C50/60	66,9	214	321	509	356	763	534
146	C20/25	87,4	225	337	750	525	1124	787
φιο	C30/37 to C50/60		244	366	582	407	873	611
410	C20/25	110.6	253	380	843	590	1265	886
φιο	C30/37 to C50/60	110,6	275	412	654	458	982	687
120	C20/25	126.6	281	422	937	656	1406	984
φ20	C30/37 to C50/60	150,0	305	458	727	509	1091	763
100	C20/25	165.2	309	464	1031	722	1546	1082
φΖΖ	C30/37 to C50/60	105,5	336	504	800	560	1200	840
104	C20/25	106.7	337	506	1124	787	1687	1181
φ24	C30/37 to C50/60	190,7	366	550	873	611	1309	916
105	C20/25	212.4	351	527	1171	820	1757	1230
φ25	C30/37 to C50/60	213,4	382	573	909	636	1363	954

Minimum anchorage length for simply supported connections under tension loading assuming σ_{sd} = f_{yd} 1)

2) 3) 4) 5) Minimum anchorage length for overlap splice joint for $\alpha_6=1,5$

Minimum anchorage length for simply supported connections in case of: $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 1,0$ - (design for yielding) Minimum anchorage length for simply supported connections in case of: $\alpha_1 = \alpha_3 = \alpha_4 = \alpha_5 = 1$; $\alpha_2 = 0,7$ - (design for yielding) Minimum anchorage length for overlap joint in case of: $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 1,0$ - (design for yielding) and $\alpha_6 = 1,5$

6) Minimum anchorage length for overlap joint in case of: $\alpha_1 = \alpha_3 = \alpha_4 = \alpha_5 = 1,0$; $\alpha_2 = 0.7$ - (design for yielding) and $\alpha_6 = 1,5$

Fire resistance based on ETA-24/0147 for working life of 50 years

For evidence under fire exposure the anchorage length should be calculated according to EN 1992-1- 1:2004+AC:2010 Equation 8.3 using the temperature-dependent bond resistance $f_{bd,fi}$.

For design use PROFIS Engineering.

Temperature reduction factor $k_{fi}(\theta)$ for concrete class C20/25 for good bond conditions

The design value of the bond strength $f_{bd,fi}$ under fire exposure have to be calculated by the following equation:

$$f_{bd,fi} = k_{b,fi}(\theta) \cdot f_{bd,PIR} \cdot \frac{\gamma_c}{\gamma_{M,fi}}$$

With $\theta \leq 338^{\circ}$ C:

$$f_{bm}(\theta) = -0.28538 + \frac{11.09328}{1 + e^{1.61226 * ln} \frac{\theta}{(2.1478)}}$$

 $k_{fi}(\theta) = \frac{f_{bm}(\theta)}{f_{bd,PIR} \cdot 4,3} \leq 1,0$

Where:

 $\theta > 338^{\circ}$ C $k_{fi}(\theta) = 0,0$

 $f_{bd,fi}$ = Design value of the bond resistance in case of fire in N/mm²

 θ = Temperature in °C in the mortar layer

 $k_{h,fi}(\theta)$ = Reduction factor under fire exposure

 $f_{bd,PIR}$ = Design value of the bond resistance in N/mm² in cold condition considering the concrete classes, rebar diameter, the drilling method, and the bond conditions according to EN 1992-1-1

- γ_c = Partial safety factor according to EN 1992-1-1
- $\gamma_{M,fi}$ = Partial safety factor according to EN 1992-1-2

Bond strength f _{bd,fi} in N/mm ² for fire design for concrete classes C20/25 to C50/60						
Rebar Temperature	50°C	100°C	150°C	200°C	250°C	338°C (θ _{max})
f _{bd,fi} [N/mm²]	2,20	1,15	0,67	0,42	0,28	0,14

Setting information

Installation temperature range

-5°C to +40°C

Service temperature range

Hilti HIT-CT 100 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	-40 °C to +80 °C	+50 °C	+80 °C

Maximum short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling.

Maximum long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Curing and working time ^{a)}

Temperature of the base material			Maximum working time	Minimum curing time	
	Т		twork	t _{cure} ^{a)}	
-5°C	to	0°C	30 min	6 h	
> 0°C	to	5°C	20 min	5 h	
> 5°C	to	10°C	15 min	4 h	
> 10°C	to	20°C	8 min	4 h	
> 20°C	to	30°C	4 min	3,5 h	
> 30°C	to	40°C	1,5 min	3 h	

a) The curing time data are valid for dry base material only. In wet material the curing times must be doubled.

Dispensers and corresponding maximum embedment depth $\ell_{v,max}$

Rebar	Dispenser			
	HDM 330, HDM 500	HDE 500		
	ℓ _{v,max} [mm]	ℓ _{v,max} [mm]		
φ8 - φ 16	700	700		
φ18 - φ25	500	700		

For detailed setting information on installation see instructions for use (IFU) given with the product. Approved installation methods can be found in the specific ETA/Certificate definitions.

Drilling and Installation equipment

Rotary Hammers (Corded and Cordless)		TE 2 - TE 80	
Dispenser		HDE HDM	
Other tools		Blow out pump, Compressed air gun, Set of cleaning brushes	
		Hammer drill bit TE-CX, TE-YX, TE-C, TE-Y	
		Hollow drill bit TE-CD, TE-YD	
	37.225	Piston plug	

Drilling mothod	Bar diameter [mm]	Minimum concrete cover c _{min} [mm]		
Drilling method		Without drilling aid	With drilling aid	
Hammer drilling	φ < 25	$30 + 0,06 \cdot I_{v} \ge 2 \cdot \phi$	30 + 0,02 · I _v ≥ 2 · φ	
(HD) and (HDB)	φ = 25	$40 + 0.06 \cdot I_{v} \ge 2 \cdot \phi$	$40 + 0,02 \cdot I_v \ge 2 \cdot \phi$	
Compressed air drilling (CA)	φ < 25	50 + 0,08 · I _v	50 + 0,02 · I _v	
	φ = 25	$60 + 0.08 \cdot I_{v} \ge 2 \cdot \phi$	$60 + 0,02 \cdot I_v \ge 2 \cdot \phi$	lv →

Minimum concrete cover cmin of the post-installed rebar

^{*)} If the clear distance between lapped bars exceeds 4 · φ or 50 mm, then the lap length shall be increased by the difference between the clear bar distance and the smaller of 4 · φ or 50 mm.

- Where, c is concrete cover of post-installed rebar
 - $c_1 = c_f$ is the end-cover of existing rebar
 - d_o is the nominal drill bit diameter
 - l₀ is the lap length
 - lv is the installation length