

ХИМИЧЕСКИЙ АНКЕР HIT-HY 100

Руководство по анкерному крепежу

Версия: Февраль 2021

Химический анкер Hilti HIT-HY 100

Premium • • • o

Гибридный клеевой анкер / Расчёт в соответствии с СТО 36554501-048-2016*

Химический анкер

Клеевой состав: Hilti HIT-HY 100 (поставляется в упаковках 330, 500 мл)

Анкерные шпильки: HAS-U HAS-U HDG HAS-U A4 HAS-U HCR (M8-M30)

Втулки с внутренней резьбой: HIS-N Втулки HIS-(R)N (M8-M20)

Преимущества

- Соответствует высоким стандартам безопасности и охраны здоровья: не содержит стирола и пластификаторов и обладает слабым запахом
- Слабый запах и незначительное содержание летучих органических соединений для длительного применения внутри помещений
- Широкий диапазон температур применения в бетоне от -10°C до +40°C
- Доступен широкий диапазон дополнительных принадлежностей (поршни для установки арматуры, аккумуляторный дозатор)
- Подходит для сухого и водонасыщенного бетона
- Допускается небольшое краевое и межосевое расстояние

Материал основания

Бетон Бетон (без трещин) (с трещинами) $^{a)}$

Сухой бетон

Влажный бетон

Нагрузки и воздействия

Статическая/ квазистатическая нагрузка

Условия установки

Ударное сверление

Изменяемая глубина установки

Небольшие краевые и межосевые расстояния

Прочая информация

Техническое свидетельство Минстроя РФ

Европейская техническая оценка

Расчёт по СТО

"Анкерные крепления к
бетону. Правила
проектирования"

Коррозионная стойкость ^{с)}

а) Данные по установке в бетон с трещинами представлены только для резьбовых шпилек диаметром М10-М16.

Разрешительные документы / сертификаты

Описание	Орган / Лаборатория	№ / Дата выдачи
Техническое свидетельство	Минстрой, РФ	5637-18 / 25.12.2018
СТО 36554501-048-2016* "Анкерные крепления к бетону. Правила проектирования" ^{b)}	АО "НИЦ "Строительство"	Приложение А. Книга 2 / 2018
Европейская техническая оценка ^{с)}	Научно-технический центр строительства (CSTB), Марн-ла-Валле	ETA-14/0009

- b) Сопротивление при статической и квазистатической нагрузке указано в соответствии с расчётом по СТО 36554501-048-2016;
- с) Коррозионностойкая версия HAS-U A4. Высококоррозионностойкая версия HAS-U HCR;
- d) Все данные в этом разделе приведены в соответствии с ETA-14/0009

Сопротивление при статической и квазистатической нагрузке (одиночный анкер)

Все данные в этом разделе приведены с учетом следующих факторов:

- Расчёт одиночного анкера произведён в соответствии с СТО 36554501-048-2016*
- Монтаж анкера выполнен в соответствии с инструкцией по установке
- Анкер установлен в бетоне класса B25, $R_{b,n}$ = 18,5 МПа
- Отсутствует влияние краевого и межосевого расстояния
- Наименьшее сопротивление анкера *по стали*
- Толщина основания соответствует указанной в таблице
- Соблюдена стандартная глубина установки, указанная в таблице
- Эксплуатация анкера производится в температурном диапазоне I (минимальная температура материала основания -43 °C, максимальная длительная/кратковременная температура материала основания: +24 °C / 40 °C)

Глубина установки и толщина основания

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
HAS-U										
Глубина установки	h _{ef}	[MM]	80	90	110	125	170	210	240	270
Толщина основания	h	[MM]	110	120	140	165	220	270	300	340
HIS-N										
Глубина установки	h _{ef}	[MM]	90	110	125	170	205	-	-	-
Толщина основания	h	[MM]	120	150	170	230	270	1	1	-

Нормативное сопротивление

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
Бетон без трещин										
Воотажонно M	HAS-U 5.8	[vL]	18,3	29,0	42,2	70,9	112,5	154,5	188,7	216,3
Растяжение N _{Rk}	HIS-N 8.8	[кН]	25,0	46,0	67,0	95,3	114,1	-	-	-
Capus V	HAS-U 5.8	[vL]	9,2	14,5	21,1	39,3	61,3	88,3	114,8	140,3
Сдвиг V _{Rk}	HIS-N 8.8	[ĸH]	13,0	23,0	34,0	63,0	58,0	-	-	-
Бетон с трещина	ами									
Растяжение N _{Rk}	HAS-U 5.8	[кН]	-	15,6	22,8	34,6	-	-	-	-
Сдвиг V _{Rk}	HAS-U 5.8	[ĸH]	-	14,5	21,1	39,3	-	-	-	-

Расчетное сопротивление¹⁾

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30	
Бетон без трещи	Бетон без трещин										
Воотдуковию M	HAS-U 5.8	[vLl]	12,2	19,3	28,1	39,4	62,5	85,8	104,8	120,2	
Растяжение N _{Rd}	HIS-N 8.8	[ĸH]	16,7	27,7	39,4	52,9	63,4	-	-	-	
Сдвиг V _{Rd}	HAS-U 5.8	FJ. 13	7,3	11,6	16,9	31,4	49,0	70,6	91,8	112,2	
СДВИІ V _{Rd}	HIS-N 8.8	[кН]	10,4	18,4	27,2	50,4	46,4	-	-	-	
Бетон с трещина	ами										
Растяжение N _{Rd}	HAS-U 5.8	[кН]	-	8,6	12,7	19,2	-	-	-	-	
Сдвиг V _{Rd}	HAS-U 5.8	[кН]	-	11,6	16,9	31,4	-	-	-	-	

¹⁾ Для группы анкеров должен быть произведён расчёт в соответствии с СТО 36554501-048-2016*

Материалы

Механические свойства HAS-U

WEXAND TECHNOLOGIC IN THE TIME TO THE TIME										
Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
	HAS-U 5.8		500	500	500	500	500	500	-	-
Предел прочности	HAS-U 8.8	- - [Н/мм²]	800	800	800	800	800	800	800	800
на растяжение f _{uk}	HAS-U A4	_ [L1/MIMI]	700	700	700	700	700	700	500	500
	HAS-U HCR	-	800	800	800	800	800	700	-	-
Предел текучести	HAS-U 5.8		440	440	440	440	400	400	-	-
	HAS-U 8.8	- - [Н/мм²]	640	640	640	640	640	640	640	640
f_{yk}	HAS-U A4		450	450	450	450	450	450	210	210
	HAS-U HCR	_	640	640	640	640	640	400	-	-
Площадь										
поперечного	HAS-U	$[MM^2]$	36,6	58,0	84,3	157	245	353	459	561
сечения A _s										
Момент	HAS-U	[MM³]	31,2	62,3	109	277	541	935	1387	1874
сопротивления W	1170-0	[ININI]	31,2	02,3	109	211	541	933	1307	1074

Механические свойства HIS-N

Диаметр анкера			M8	M10	M12	M16	M20
	HIS-N		490	490	460	460	460
Предел прочности	Шпилька 8.8	[H/мм²]	800	800	800	800	800
на растяжение f _{uk}	HIS-RN	[III/IMIMI]	700	700	700	700	700
	Шпилька А4 - 70		700	700	700	700	700
Предел текучести	HIS-N		410	410	375	375	375
	Шпилька 8.8	[H/mm²]	640	640	640	640	640
f_{yk}	HIS-RN	[i i/iviivi]	350	350	350	350	350
	Шпилька А4 - 70		450	450	450	450	450
Площадь поперечного	HIS-(R)N	[MM ²]	51,5	108,0	169,1	256,1	237,6
сечения А _s	Шпилька	[IAIIAI]	36,6	58	84,3	157	245
Момент	Момент HIS-(R)N		145	430	840	1595	1543
сопротивления W	Шпилька	[MM ³]	31,2	62,3	109	277	541

Материалы для HAS-U

Элемент	Материал					
Шпильки из с	рцинкованной стали					
	М8 – М24: Класс прочности 5.8:					
	- Удлинение при разрыве (I ₀ =5d) > 8%;					
HAS-U	М8 – М30: Класс прочности 8.8:					
	- Удлинение при разрыве (I₀=5d) > 12%;					
	Гальваническое цинковое покрытие (≥5 мкм); (F) горячеоцинкованное покрытие (≥45 мкм)					
Шайба	Гальваническое цинковое покрытие (≥5 мкм); (F) горячеоцинкованное покрытие (≥45 мкм)					
Гайка	Класс прочности гайки соответствует классу прочности резьбовой шпильки.					
Гайка	Гальваническое цинковое покрытие (≥5 мкм); горячеоцинкованное покрытие (≥45 мкм)					
Шпильки из н	соррозионностойкой стали					
	М8 – М24: Класс прочности 70					
HAS-U A4	M27 – M30: Класс прочности 50:					
ПАЗ-U А4	- Удлинение при разрыве (I₀=5d) > 8%;					
	Нержавеющая сталь A4 в соответствии с EN 10088-1:2014					
Шайба	Нержавеющая сталь A4 в соответствии с EN 10088-1:2014					
Гайка	Класс прочности гайки соответствует классу прочности резьбовой шпильки.					
Гайка	Нержавеющая сталь A4 в соответствии с EN 10088-1:2014					
Шпильки из в	высококоррозионностойкой стали					
	М8 – М20: Класс прочности 70:					
HAS-U HCR	М24: Класс прочности 80:					
TIAS-UTICK	- Удлинение при разрыве (I₀=5d) > 8%;					
	Высококоррозионностойкая сталь в соответствии с EN 10088-1:2014					
Шайба	Высококоррозионностойкая сталь в соответствии с EN 10088-1:2014					
Гайка	Класс прочности гайки соответствует классу прочности резьбовой шпильки.					
т аика	Высококоррозионностойкая сталь в соответствии с EN 10088-1:2014					

Материалы для HIS-N

Элемен	Т	Материал					
HIS-N	Втулка с внутренней резьбой	Углеродистая сталь 1.0718, оцинкованная (≥5 мкм)					
	Болт 8.8	Сталь класса прочности 8.8, А5 > 8%, оцинкованная (≥5 мкм)					
HIS-RN	Втулка с внутренней резьбой	Нержавеющая сталь 1.4401,1.4571					
TIIO-KIN	Болт 70	Сталь класса прочности 70, А5 > 8% пластичного; Нержавеющая сталь 1.4401; 1.4404, 1.4578; 1.4571; 1.4439; 1.4362					

Информация по установке

Температурный диапазон установки:

от -10 °C до + 40 °C

Температурный диапазон эксплуатации

Химический анкер Hilti HIT-HY 100 может применяться в диапазонах температур, указанных ниже. Повышенная температура основания может привести к снижению расчетной прочности сцепления.

Температурный диапазон	Температура основания	Максимальная длительная температура основания	Максимальная кратковременная температура основания
Температурный диапазон I	от -43 °C до +40 °C	+ 24 °C	+ 40 °C
Температурный диапазон II	от -43 °C до +80 °C	+ 50 °C	+ 80 °C

Максимальная кратковременная температура основания

Кратковременная температура материала основания – это максимальная температура основания, которая может наблюдаться в течении всего периода эксплуатации.

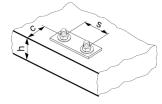
Максимальная длительная температура основания

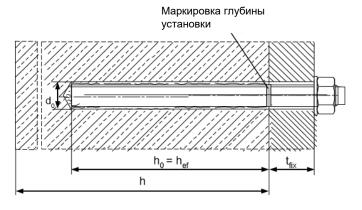
Длительная температура материала основания принимается как среднесуточная температура в течение длительного периода времени.

Время набора прочности и время полного твердения

Температура основания	Максимальное время набора прочности t _{work}	Минимальное время полного твердения t _{cure} ^{а)}		
-10 °C < T _{BM} ≤ -5 °C ^{b)}	180 мин.	12 ч		
-5 °C < T _{BM} ≤ 0 °C	40 мин.	4 ч		
0 °C < T _{BM} ≤ 5 °C	20 мин.	2 ч		
5 °C < T _{BM} ≤ 20 °C	8 мин.	1 ч		
20 °C < T _{BM} ≤ 30 °C	5 мин.	30 мин.		
30 °C < T _{BM} ≤ 40 °C	2 мин.	30 мин.		

а) Данные по времени полного твердения указаны только для сухого материала основания. Во влажном материале основания время полного твердения должно быть увеличено в 2 раза.

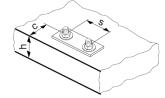

b) Температура упаковки с химическим анкером должна быть между 20 °C и 25 °C.

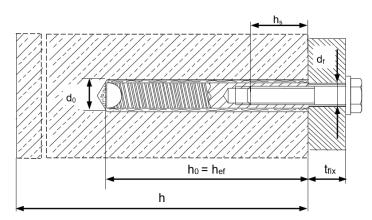


Установочные параметры для HAS-U

Диаметр анкера	- 1717 <u>-</u>	1710	M8	M10	M12	M16	M20	M24	M27	M30
Номинальный диаметр бура	d ₀	[MM]	10	12	14	18	22	28	30	35
Диаметр элемента	d	[мм]	8	10	12	16	20	24	27	30
Эффективная глубина	h _{ef,min}		60	60	70	80	90	100	110	120
анкеровки и глубина отверстия ^{а)}	h _{ef,max}	[MM]	160	200	240	320	400	480	540	600
Минимальная толщина основания ^{b)}	h _{min}	[MM]	h _{ef} + 30 ≥ 100 мм					h _{ef} + 2 d ₀		
Диаметр отверстия в закрепляемой детали	d_{f}	[MM]	9	12	14	18	22	26	30	33
Минимальное межосевое расстояние	s_{min}	[MM]	40	50	60	80	100	120	135	150
Минимальное краевое расстояние	C _{min}	[MM]	40	50	60	80	100	120	135	150
Критическое межосевое расстояние при раскалывании основания	S _{cr,sp}	[мм]	2 c _{cr,sp}							
			1,0 ·	h _{ef}	для h /	h _{ef} ≥ 2,0	h/h _{ef}			
Критическое краевое расстояние при раскалывании основания ^{а)}	C _{cr,sp}	[MM]	4,6 h _{ef} ·	· 1,8 h	для 1,3 < h	/ h _{ef} < 2,0				
			2,26	h _{ef}	для h /	h _{ef} ≤ 1,3		1,0·h _e	_{ef} 2,26·h	C _{cr,sp}
Критическое межосевое расстояние при выкалывании бетона основания	S _{cr,N}	[мм]	2 c _{cr,N}							
Критическое краевое расстояние при выкалывании бетона основания с)	C _{cr,N}	[мм]	1,5 h _{ef}							
Момент затяжки ^{d)}	T_{max}	[Нм]	10	20	40	80	150	200	270	300

- b)
- $h_{\text{ef,min}} \leq h_{\text{ef}} \leq h_{\text{ef,max}} \; (h_{\text{ef}} : глубина установки)$ h: толщина основания $(h \geq h_{\text{min}})$ Критическое краевое расстояние при выкалывании бетона основания зависит от глубины установки h_{ef} и расчетной прочности сцепления. Упрощенная формула, приведенная в c) этой таблице, учитывает требования безопасности.
- Максимальный рекомендуемый момент затяжки во избежание раскалывания основания во время установки с минимальным межосевым и/или краевым расстоянием.





Установочные параметры для HIS-N

Диаметр анкера			М8	M10	M12	M16	M20
Номинальный диаметр	d ₀	[MM]	14	18	22	28	32
бура							
Диаметр элемента	d	[MM]	12,5	16,5	20,5	25,4	27,6
Эффективная глубина анкеровки и глубина отверстия	h _{ef}	[мм]	90	110	125	170	205
Минимальная толщина основания	h _{min}	[MM]	120	150	170	230	270
Диаметр отверстия в закрепляемой детали	d_{f}	[мм]	9	12	14	18	22
Длина зацепления резьбы мин макс.	hs	[MM]	8-20	10-25	12-30	16-40	20-50
Минимальное межосевое расстояние	S _{min}	[MM]	40	45	55	65	90
Минимальное краевое расстояние	C _{min}	[MM]	40	45	55	65	90
Критическое межосевое расстояние при раскалывании основания	S _{cr,sp}	[мм]			2 c _{cr,sp}		
			1,0 ⋅ h _{ef}	1,0 · h _{ef} для h / h _{ef} ≥ 2,0		h/h _{ef}	
Критическое краевое расстояние при раскалывании основания а)	C _{cr,sp}	[мм]	4,6 h _{ef} - 1,8	h для 1,3 <	h / h _{ef} < 2,0	1,3	
			2,26 h _{ef}	для h /	h _{ef} ≤ 1,3	1,0·h	c _{ef} 2,26·h _{ef}
Критическое межосевое расстояние при выкалывании бетона основания	S _{cr,N}	[мм]			2 c _{cr,N}		
Критическое краевое расстояние при выкалывании бетона основания ^{b)}	C _{cr,N}	[мм]			1,5 h _{ef}		
Момент затяжки ^{с)}	T_{max}	[Нм]	10	20	40	80	150

- Могут использоваться оба данных значения для диаметра бура
- $h_{\text{ef,min}} \le h_{\text{ef}} \le h_{\text{ef,max}} \left(h_{\text{ef}} : \text{глубина установки} \right)$ h: толщина основания $(h \ge h_{\text{min}})$ b)
- c) d)
- Критическое краевое расстояние при выкалывании бетона основания зависит от глубины установки h_{ef} и расчетной прочности сцепления. Упрощенная формула, приведенная в этой таблице, учитывает требования безопасности.
- Максимальный рекомендуемый момент затяжки во избежание раскалывания основания во время установки с минимальным межосевым и/или краевым расстоянием.

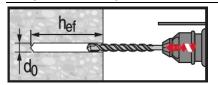
Оборудование для установки

Диаметр анкер	M8	M10	M12	M16	M20	M24	M27	M30		
Попфоротор	HAS-U		TE 2 –	TE 30			TE 40 – TE 80			
Перфоратор	HIS-N	TE 2 –	TE 30	TE	40 – TE	80	-			
Другие инструк	иенты	К	омпрессо	•	ым возду абор щето		и или насос для продувки дозатор			

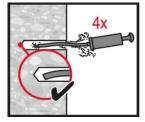
Параметры оборудования

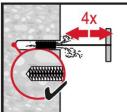
HAS-U	HIS-N	Бур	Щетка HIT-RB	Поршень HIT-SZ			
		d ₀ [мм]	размер [мм]				
mananan [] n	DINUNUNUNUNUN		*******				
M8	-	10	10	-			
M10	-	12	12	12			
M12	M8	14	14	14			
M16	M10	18	18	18			
-	M12	22	22	22			
M20	-	24	24	24			
M24	M16	28	28	28			
M27	-	30	30	30			
-	M20	32	32	32			
M30	-	35	35	35			

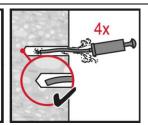
Инструкция по установке


*Подробную информацию по установке смотрите в инструкции, поставляемой с продуктом.

Правила техники безопасности.

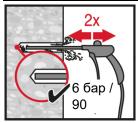

Перед использованием ознакомьтесь с Паспортом безопасности материала для соблюдения требований к безопасной и правильной установке! Используйте очки и перчатки подходящего размера при работе с Hilti HIT-HY 100.

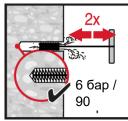

Сверление отверстия

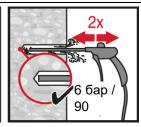


Ударное сверление

Очистка отверстия

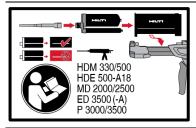


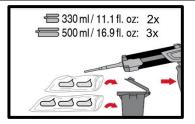




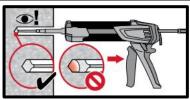
Ручная очистка

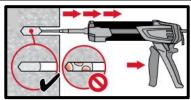
для отверстий диаметром $d_0 \le 18$ мм и глубиной $h_0 \le 10$ -d.

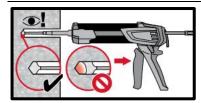


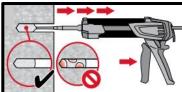

Очистка сжатым воздухом

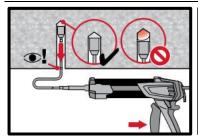
для всех отверстий диаметром d_0 и глубиной h_0 .

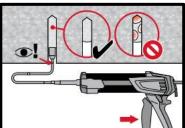


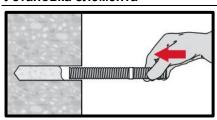

Инъецирование клеевого состава

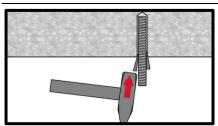

Подготовка химического анкера



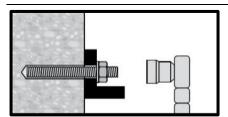

Метод **инъецирования** для отверстий глубиной


 $h_{ef} \le 250 \text{ MM}$


Метод **инъецирования** для установки с глубиной $h_{ef} > 250$ мм.



Метод **инъецирования** для установки анкера в потолок и/или установки с глубиной $h_{\rm ef}$ > 250 мм.


Установка элемента

Установка элемента с соблюдением времени набора прочности \mathbf{t}_{work}

Установка элемента в потолок с соблюдением времени набора прочности \mathbf{t}_{work}

Нагружение анкера: По истечении требуемого времени полного твердения t_{cure} анкер может быть нагружен.

Химический анкер HIT-HY 100

Premium • • • o

Гибридный клеевой анкер / Расчёт в соответствии с СТО 36554501-048-2016*

Химический анкер

Клеевой состав: Hilti HIT-RE 100 (поставляется в упаковках объёмом 330, 500 мл)

Арматура А500С (ф8-ф32)

Преимущества

- Подходит для бетона с трещинами и без трещин класса B25-B60
- Подходит для применения в сухом и влажном бетоне
- Наименьшие краевые и межосевые расстояния
- Диапазон рабочих температур до 80°C при краткосрочном / 50°C долгосрочном воздействии

Материал основания

Бетон Бетон ^{а)} (без трещин) (с трещинами)

Сухой бетон Влажный бетон

Статические/ квазистатические

Условия установки

Ударное сверление

Изменяемая глубина установки

Небольшие краевые и межосевые расстояния

Прочая информация

Нагрузки и воздействия

Европейская техническая оценка

Соответствие СЕ

Расчёт по СТО "Анкерные крепления к бетону. Правила проектирования"

а) Данные по установке в бетон с трещинами представлен только для арматуры периодического профиля Ø10-Ø16 мм.

Разрешительные документы / сертификаты

Описание	Орган / Лаборатория	№ / Дата выдачи
Техническое свидетельство	Минстрой, РФ	5637-18 / 25.12.2018
СТО 36554501-048-2016* "Анкерные крепления к бетону. Правила проектирования" ^{b)}	АО "НИЦ "Строительство"	Приложение А. Книга 2 / 2018
Европейская техническая оценка ^{с)}	CSTB	ETA-14/0009

- b) Сопротивление при статической и квазистатической нагрузке указано в соответствии с расчётом по СТО 36554501-048-2016;
- с) Все данные в этом разделе приведены в соответствии с ЕТА-14/0009

Сопротивление при статической и квазистатической нагрузке (одиночный анкер)

Все данные в этом разделе приведены с учетом следующих факторов:

- Расчёт одиночного анкера произведён в соответствии с СТО 36554501-048-2016*
- Монтаж анкера выполнен в соответствии с инструкцией по установке
- Отсутствует влияние краевого и межосевого расстояния
- Наименьшее сопротивление анкера *по стали*
- Толщина основания соответствует указанной в таблице
- Одна типовая глубина установки, соответствующая указанной в таблице
- Используется арматура класса A500C по ГОСТ Р 52544
- Анкер установлен в бетоне класса B25, R_{b,n} = 18,5 МПа
- Эксплуатация производится в температурном диапазоне I (минимальная температура материала основания -43 °C, максимальная длительная/кратковременная температура материала основания: +24 °C / 40 °C)

Глубина установки и толщина основания

Арматура			ф8	φ10	φ12	φ14	φ16	φ20	φ25
Глубина установки	h _{ef}	[MM]	80	90	110	125	125	170	210
Толщина основания	h	[MM]	110	120	140	165	185	220	274

Нормативное сопротивление

Арматура			ф8	φ10	φ12	φ14	φ16	φ20	ф25	
Бетон без трещин										
Растяжение N _{Rk}	— A500C [к	H] 1	19,1	26,9	39,4	52,2	56,7	101,5	154,5	
Сдвиг V _{Rk}	— A300C [k		12,6	19,6	28,3	38,5	50,3	78,5	122,7	
Бетон с трещина	Бетон с трещинами									
Растяжение N _{Rk}	— A500C [к	н] —	-	15,6	22,8	30,2	34,6	-	-	
Сдвиг V _{Rk}	— A300C [K	' ']	-	19,6	28,3	38,5	50,3	-	-	

Расчетное сопротивление¹⁾

Арматура		ф8	φ10	φ12	φ14	φ16	ф20	φ25		
Бетон без трещин	1									
Растяжение N _{Rd}	— A500C [кH]	10,6	14,9	21,9	29,0	33,2	56,4	85,8		
Сдвиг V _{Rd}	— A500C [KH]	10,1	15,7	22,6	30,8	40,2	62,8	98,2		
Бетон с трещинам	Бетон с трещинами									
Растяжение N _{Rd}	۸500C [۱/L]	-	8,6	12,7	16,8	19,2	-	-		
Сдвиг V _{Rd}	- A500C [кН]	-	15,7	22,6	30,8	40,2	-	-		

¹⁾ Для группы анкеров должен быть произведён расчёт в соответствии с СТО 36554501-048-2016*

Материалы

Механические свойства

Арматура			ф8	φ10	φ12	φ14	φ16	ф20	φ25
Предедел	A500C	[L]/s as a21	600	600	600	600	600	600	600
прочности на растяжение f _{uk}	A400	[H/mm²]	590	590	590	590	590	590	590
Предел _	A500C	[L]/s as a21	500	500	500	500	500	500	500
	A400	[H/mm²]	390	390	390	390	390	390	600 590
Площадь попер сечения А _s	речного	[MM ²]	50,3	78,5	113,1	153,9	201,1	314,2	490,9
Момент сопротивления		[MM³]	50,3	98,2	169,6	269,4	402,1	785,4	1534

Характеристика арматуры

Элемент	Материал
Арматурный стержень	Класс А500С по ГОСТ Р 52544, ГОСТ 34028; Класс А400 по ГОСТ 5781-82, ГОСТ 34028

Информация по установке

Температурный диапазон установки:

от -10°C до +40°C

Температурный диапазон эксплуатации

Клеевой анкер Hilti HIT-HY 100 может применяться в диапазонах температур, указанных ниже. Повышенная температура материала основания может привести к снижению расчетной прочности сцепления.

Температурный диапазон	Температура основания	Максимальная длительная температура основания	Максимальная кратковременная температура основания
Температурный диапазон I	-43 °C до + 40 °C	+ 24 °C	+ 40 °C
Температурный диапазон II	-43 °C до + 80 °C	+ 50 °C	+ 80 °C

Максимальная кратковременная температура основания

Кратковременная температура материала основания – это максимальная температура основания, которая может наблюдаться в течении всего периода эксплуатации.

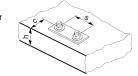
Максимальная длительная температура основания

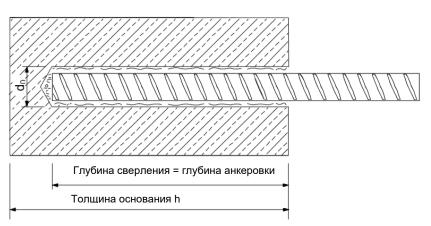
Длительная температура материала основания принимается как среднесуточная температура в течение длительного периода времени.

Время набора прочности и время твердения

Температура материала основания	Максимальное время твердения t _{work}	Минимальное время набора прочности t _{cure} ^{а)}
-10 °C < T _{BM} ≤ -5 °C ^{b)}	180 мин	12 ч
-5 °C < T _{BM} ≤ 0 °C	40 мин	4 ч
0 °C < T _{BM} ≤ 5 °C	20 мин	2 ч
5°C < T _{BM} ≤ 20 °C	8 мин	1 ч
20 °C < T _{BM} ≤ 30 °C	5 мин	30 мин
30 °C < T _{BM} ≤ 40 °C	2 мин	30 мин

данные по времени набора прочности указаны только для сухого материала основания. Во влажном материале основания время набора прочности должно быть увеличено в 2 раза;


b) Температура упаковки должна составлять от 20°С до 25°С.



Установочные парметры

Арматура			ф8	φ10	φ12	φ14	φ16	φ20	φ25
Номинальный диаметр бура	d_0	[MM]	12	14	16	18	20	25	32
Диапазон эффективной	h _{ef,min}		60	60	70	80	80	90	100
глубины анкеровки и глубины отверстия	h _{ef,max}	[MM]	160	200	240	280	320	400	500
Минимальная толщина основания ^{а)}	$h_{\text{min}} \\$	[MM]	h _{ef} + 3	30 мм			h _{ef} + 2 d ₀		
Минимальное межосевое расстояние	S _{min}	[MM]	40	50	60	70	80	100	125
Минимальное краевое расстояние	C _{min}	[MM]	40	50	60	70	80	100	125
Критическое межосевое расстояние при раскалывании основания	S _{cr,sp}	[мм]	2 c _{cr,sp}						
Критическое краевое			1,0 ·	h _{ef}	для h / h _є	_{ef} ≥ 2,0	h/h _{ef}		
расстояние при раскалывании	$C_{cr,sp}$	[MM]	4,6 h _{ef} -	1,8 h	для 1,3 < h /	/ h _{ef} < 2,0	1,3		
основания			2,26	h _{ef}	для h / h _е	_{ef} ≤ 1,3		1,0·h _{ef} 2	c _{cr,sp} 26·h _{ef}
Критическое межосевое расстояние при выкалывании бетона основания	S _{cr,N}	[мм]				2 c _{cr,N}			
Критическое краевое расстояние при выкалывании бетона основания ^{b)}	C _{cr,N}	[MM]				1,5 h _{ef}			

h: толщина основания (h ≥ h_{min}), h_{ef}: эффективная глубина анкеровки Критическое краевое расстояние при выкалывании бетона основания зависит от глубины установки h_{ef} и расчетной прочности сцепления. Упрощенная формула, приведенная в этой таблице, учитывает требования безопасности.

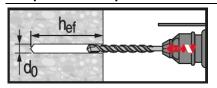
Оборудование для установки

Арматура	ф8	φ10	φ12	φ14	φ16	φ20	ф25	
Перфоратор	TE 2 – TE 30 TE 40 – TE 70							
Другие инструменты	K	омпрессор	со сжатым набор	воздухом и с щеток, до	• •	ля продувк	И	

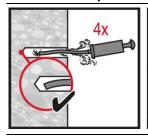
Параметры оборудования

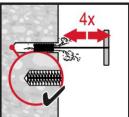
Арматура, d [мм]	Бур	Щетка HIT-RB	Поршень HIT-SZ
	d ₀ [мм]	Размер [мм]	
		400000000000000000000000000000000000000	- (2000 No.
ф8	12	12	12
φ10	14	14	14
φ12	16	16	16
φ14	18	18	18
φ16	20	20	20
ф20	25	25	25
φ25	32	32	32

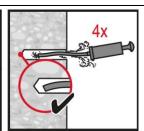
Инструкция по установке


*Подробную информацию по установке смотрите в инструкции, поставляемой с продуктом

Правила техники безопасности.

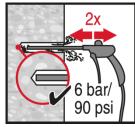

Перед использованием ознакомьтесь с Паспортом безопасности материала для выполнения требований к безопасной и правильной установке! Используйте защитные очки и перчатки подходящего размера при работе с Hilti HIT HY 100.

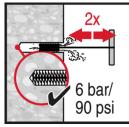

Сверление отверстия

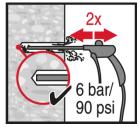


Ударное сверление

Очистка отверстия

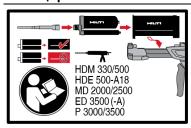


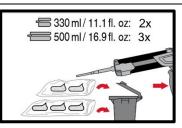




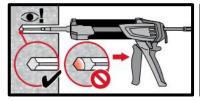
Ручная очистка

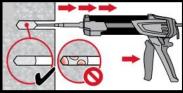
для отверстий диаметром $d_0 \le 18$ мм и глубиной $h_0 \le 10$ -d.

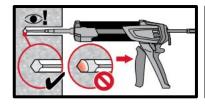


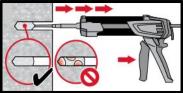


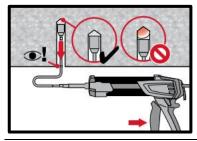
Очистка сжатым воздухом для всех отверстий диаметром d_0 и глубиной h_0 .

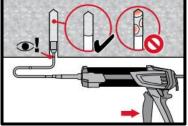

Инъецирование клеевого состава

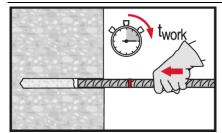


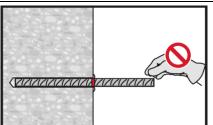

Подготовка химического анкера

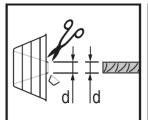


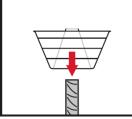


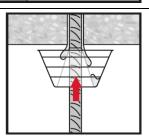

Метод **инъецирования** для установки с глубиной $h_{ef} \le 250$ мм.

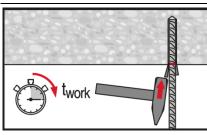

Метод **инъецирования** для установки с глубиной $h_{\rm ef}$ > 250 мм.

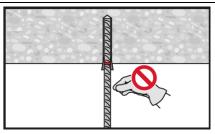



Метод **инъецирования** для установки анкера в потолок и/или установки с глубиной h_{ef} > 250 мм..


Установка элемента




Установка элемента с соблюдением времени твердения t_{work}



Установка элемента в потолок с соблюдением времени твердения t_{work}

Нагружение элемента: После требуемого времени набора прочности \mathbf{t}_{cure}